Micellar drug nanocarriers and biomembranes: How do they interact?

Antonio De Nicola, Samira Hezaveh, Ying Zhao, Toshihiro Kawakatsu, Danilo Roccatano, Giuseppe Milano

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)

Abstract

Pluronic based formulations are among the most successful nanomedicines and block-copolymer micelles including drugs that are undergoing phase I/II studies as anticancer agents. Using coarse-grained models, molecular dynamics simulations of large-scale systems, modeling Pluronic micelles interacting with DPPC lipid bilayers, on the μs timescale have been performed. Simulations show, in agreement with experiments, the release of Pluronic chains from the micelle to the bilayer. This release changes the size of the micelle. Moreover, the presence of drug molecules inside the core of the micelle has a strong influence on this process. The picture emerging from the simulations is that the micelle stability is a result of an interplay of drug-micelle core and block-copolymer-bilayer interactions. The equilibrium size of the drug vector shows a strong dependency on the hydrophobicity of the drug molecules embedded in the core of the micelle. In particular, the radius of the micelle shows an abrupt increase in a very narrow range of drug molecule hydrophobicity.

Original languageEnglish
Pages (from-to)5093-5105
Number of pages13
JournalPhysical Chemistry Chemical Physics
Volume16
Issue number11
DOIs
Publication statusPublished - 2014 Mar 21

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Micellar drug nanocarriers and biomembranes: How do they interact?'. Together they form a unique fingerprint.

Cite this