TY - JOUR
T1 - Methodologies to assess blood flow in cerebral aneurysms
T2 - Current state of research and perspectives
AU - Augsburger, L.
AU - Reymond, P.
AU - Fonck, E.
AU - Kulcsar, Z.
AU - Farhat, M.
AU - Ohta, M.
AU - Stergiopulos, N.
AU - A. Rüfenacht, D.
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 2009/12
Y1 - 2009/12
N2 - With intracranial aneurysms disease bringing a weakened arterial wall segment to initiate, grow and potentially rupture an aneurysm, current understanding of vessel wall biology perceives the disease to follow the path of a dynamic evolution and increasingly recognizes blood flow as being one of the main stakeholders driving the process. Although currently mostly morphological information is used to decide on whether or not to treat a yet unruptured aneurysm, among other factors, knowledge of blood flow parameters may provide an advanced understanding of the mechanisms leading to further aneurismal growth and potential rupture. Flow patterns, velocities, pressure and their derived quantifications, such as shear and vorticity, are today accessible by direct measurements or can be calculated through computation. This paper reviews and puts into perspective current experimental methodologies and numerical approaches available for such purposes. In our view, the combination of current medical imaging standards, numerical simulation methods and endovascular treatment methods allow for thinking that flow conditions govern more than any other factor fate and treatment in cerebral aneurysms. Approaching aneurysms from this perspective improves understanding, and while requiring a personalized aneurysm management by flow assessment and flow correction, if indicated.
AB - With intracranial aneurysms disease bringing a weakened arterial wall segment to initiate, grow and potentially rupture an aneurysm, current understanding of vessel wall biology perceives the disease to follow the path of a dynamic evolution and increasingly recognizes blood flow as being one of the main stakeholders driving the process. Although currently mostly morphological information is used to decide on whether or not to treat a yet unruptured aneurysm, among other factors, knowledge of blood flow parameters may provide an advanced understanding of the mechanisms leading to further aneurismal growth and potential rupture. Flow patterns, velocities, pressure and their derived quantifications, such as shear and vorticity, are today accessible by direct measurements or can be calculated through computation. This paper reviews and puts into perspective current experimental methodologies and numerical approaches available for such purposes. In our view, the combination of current medical imaging standards, numerical simulation methods and endovascular treatment methods allow for thinking that flow conditions govern more than any other factor fate and treatment in cerebral aneurysms. Approaching aneurysms from this perspective improves understanding, and while requiring a personalized aneurysm management by flow assessment and flow correction, if indicated.
KW - Blood flow assessment
KW - Cerebral aneurysms
KW - Computational fluid dynamics
KW - Particle image velocimetry
UR - http://www.scopus.com/inward/record.url?scp=71049160034&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=71049160034&partnerID=8YFLogxK
U2 - 10.1016/j.neurad.2009.03.001
DO - 10.1016/j.neurad.2009.03.001
M3 - Article
C2 - 19487029
AN - SCOPUS:71049160034
VL - 36
SP - 270
EP - 277
JO - Journal of Neuroradiology
JF - Journal of Neuroradiology
SN - 0150-9861
IS - 5
ER -