TY - JOUR
T1 - Metal-insulator transition and spin gap in the spin-1/2 ladder system Sr14-xAxCu24O41 (A = Ba and Ca)
AU - Kato, Masatsune
AU - Shiota, Kazunori
AU - Koike, Yoji
N1 - Funding Information:
We are indebted to J. Akimitsu and M. Uehara for sending us their preprint before publication. We thank Y. Saito for continuous encouragement in the course of this study. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas, "Anomalous metallic state near the Mott transition", from the Ministry of Education, Science, Sports and Culture, Japan.
PY - 1996/2/20
Y1 - 1996/2/20
N2 - We have investigated the transport and magnetic properties of the spin-1/2 ladder system with two legs Sr14-xAxCu24O41 (A = Ba and Ca). For x = 0, both electrical resistivity and thermoelectric power exhibit semiconductive behavior. It becomes more insulating with the increase in x(Ba), while it becomes more conductive with the increase in x(Ca). A metal-insulator transition is found at x(Ca) = 6.0-8.4 from the thermoelectric power measurements. The magnetic susceptibility exhibits a broad peak around 80 K for x = 0. Subtracting the Curie component at low temperatures, the remainder of the susceptibility χs(T) decreases toward zero with decreasing temperature below ∼ 80 K, which implies the presence of a spin gap. The temperature at which the broad peak shows the maximum changes little through the partial substitution of Ba and Ca for Sr. However, the value of χs(T) decreases with the increase in x(Ba), while it tends to increase with the increase in x(Ca). These properties are discussed in terms of the redistribution of holes between the two different sites of Cu. It appears that the observed spin gap behavior is due to Cu2+ spins in the CuO2 chain rather than in the Cu2O3 plane.
AB - We have investigated the transport and magnetic properties of the spin-1/2 ladder system with two legs Sr14-xAxCu24O41 (A = Ba and Ca). For x = 0, both electrical resistivity and thermoelectric power exhibit semiconductive behavior. It becomes more insulating with the increase in x(Ba), while it becomes more conductive with the increase in x(Ca). A metal-insulator transition is found at x(Ca) = 6.0-8.4 from the thermoelectric power measurements. The magnetic susceptibility exhibits a broad peak around 80 K for x = 0. Subtracting the Curie component at low temperatures, the remainder of the susceptibility χs(T) decreases toward zero with decreasing temperature below ∼ 80 K, which implies the presence of a spin gap. The temperature at which the broad peak shows the maximum changes little through the partial substitution of Ba and Ca for Sr. However, the value of χs(T) decreases with the increase in x(Ba), while it tends to increase with the increase in x(Ca). These properties are discussed in terms of the redistribution of holes between the two different sites of Cu. It appears that the observed spin gap behavior is due to Cu2+ spins in the CuO2 chain rather than in the Cu2O3 plane.
UR - http://www.scopus.com/inward/record.url?scp=0030081734&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030081734&partnerID=8YFLogxK
U2 - 10.1016/0921-4534(95)00802-0
DO - 10.1016/0921-4534(95)00802-0
M3 - Article
AN - SCOPUS:0030081734
VL - 258
SP - 284
EP - 292
JO - Physica C: Superconductivity and its Applications
JF - Physica C: Superconductivity and its Applications
SN - 0921-4534
IS - 3-4
ER -