Mechanistic formulation of PWSCC growth rates of nibase alloys and weld metals

Zhanpeng Lu, Tetsuo Shoji, He Xue, Chaoyang Fu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Several Ni-base alloys and their weld metals such as Alloy 600 and Alloy 82/182 suffered from stress corrosion cracking in pressurized water reactor primary water environments. Materials Reliability Program (MRP) proposed a CGR disposition curve in a report MRP 55 for PWSCC of thicksection Alloy 600 materials. This deterministic CGR equation has been adopted by Section XI Nonmandatory Appendix O of the ASME Boiler and Pressure Code for flaw evaluation. MRP also proposed a CGR disposition curve in MRP report 115 for PWSCC of Alloy 82/182/132 weld metals. In the same fashion, JSME and JNES also provided CGR disposition curves in the flaw evaluation procedure in structural integrity analysis. Stress intensity factor (K), temperature and thermal activation energy are included in both MRP 55 and MRP 115 reports. Both MRP 55 and MRP 115 are engineering-based rather than mechanism-based. The fundamental correlations such as crack growth rate vs. K are quantified based on the theoretical model and screened experimental data, which are compared to the reported disposition curves and used for improving the prediction.

Original languageEnglish
Title of host publicationASME 2011 Pressure Vessels and Piping Conference, PVP 2011
Pages883-891
Number of pages9
DOIs
Publication statusPublished - 2011
EventASME 2011 Pressure Vessels and Piping Conference, PVP 2011 - Baltimore, MD, United States
Duration: 2011 Jul 172011 Jul 21

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Volume1
ISSN (Print)0277-027X

Other

OtherASME 2011 Pressure Vessels and Piping Conference, PVP 2011
CountryUnited States
CityBaltimore, MD
Period11/7/1711/7/21

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Mechanistic formulation of PWSCC growth rates of nibase alloys and weld metals'. Together they form a unique fingerprint.

Cite this