TY - JOUR
T1 - Mechanisms for enhanced endothelium-derived hyperpolarizing factor-mediated responses in microvessels in mice
AU - Ohashi, Junko
AU - Sawada, Ayuko
AU - Nakajima, Sota
AU - Noda, Kazuki
AU - Takaki, Aya
AU - Shimokawa, Hiroaki
PY - 2012
Y1 - 2012
N2 - Background: Endothelium-derived relaxing factors play an important role in cardiovascular homeostasis. Among them, endothelium-derived hyperpolarizing factor (EDHF) is important especially in microcirculation. It has previously been demonstrated that endothelium-derived hydrogen peroxide (H 2O 2) is an EDHF in animals and humans and that endothelial nitric oxide synthase (eNOS) plays diverse roles as a nitric oxide (NO) generating system in conduit arteries and as an EDHF/H 2O 2 generating system in microvessels. As compared with NO-mediated responses, those by EDHF are resistant to atherosclerosis, contributing to the maintenance of cardiovascular homeostasis. The aim of this study is to elucidate the molecular mechanisms for enhanced EDHF-mediated responses in microvessels. Methods and Results: This study used male wild-type mice and caveolin-1-deficient mice (caveolin-1-/- mice). In the endothelium, eNOS was functionally suppressed in mesenteric arteries (microvessels) compared with the aorta (conduit arteries), for which Ca 2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) and caveolin-1 are involved, as EDHF-mediated responses were inhibited by STO-609 (an inhibitor of CaMKKβ) and in caveolin-1-/- mice, respectively. In vascular smooth muscle, relaxation responses to H 2O 2 were enhanced through a protein kinase G1α (PKG1α)-mediated mechanism in mesenteric arteries compared with the aorta, as they were inhibited by Rp-8-BrcGMPS (an inhibitor of PKG1α). Conclusions: These results indicate that CaMKKβ, caveolin-1, and PKG1α are substantially involved in the mechanisms for the enhanced EDHF-mediated responses in microvessels in mice.
AB - Background: Endothelium-derived relaxing factors play an important role in cardiovascular homeostasis. Among them, endothelium-derived hyperpolarizing factor (EDHF) is important especially in microcirculation. It has previously been demonstrated that endothelium-derived hydrogen peroxide (H 2O 2) is an EDHF in animals and humans and that endothelial nitric oxide synthase (eNOS) plays diverse roles as a nitric oxide (NO) generating system in conduit arteries and as an EDHF/H 2O 2 generating system in microvessels. As compared with NO-mediated responses, those by EDHF are resistant to atherosclerosis, contributing to the maintenance of cardiovascular homeostasis. The aim of this study is to elucidate the molecular mechanisms for enhanced EDHF-mediated responses in microvessels. Methods and Results: This study used male wild-type mice and caveolin-1-deficient mice (caveolin-1-/- mice). In the endothelium, eNOS was functionally suppressed in mesenteric arteries (microvessels) compared with the aorta (conduit arteries), for which Ca 2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) and caveolin-1 are involved, as EDHF-mediated responses were inhibited by STO-609 (an inhibitor of CaMKKβ) and in caveolin-1-/- mice, respectively. In vascular smooth muscle, relaxation responses to H 2O 2 were enhanced through a protein kinase G1α (PKG1α)-mediated mechanism in mesenteric arteries compared with the aorta, as they were inhibited by Rp-8-BrcGMPS (an inhibitor of PKG1α). Conclusions: These results indicate that CaMKKβ, caveolin-1, and PKG1α are substantially involved in the mechanisms for the enhanced EDHF-mediated responses in microvessels in mice.
KW - Endothelial nitric oxide synthase
KW - Endothelium-derived hyperpolarizing factor
KW - Microveesels
KW - Nitric oxide
UR - http://www.scopus.com/inward/record.url?scp=84863215782&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863215782&partnerID=8YFLogxK
U2 - 10.1253/circj.CJ-12-0197
DO - 10.1253/circj.CJ-12-0197
M3 - Article
C2 - 22466633
AN - SCOPUS:84863215782
VL - 76
SP - 1768
EP - 1779
JO - Circulation Journal
JF - Circulation Journal
SN - 1346-9843
IS - 7
ER -