Mechanically strong nanocrystalline Fe-Si-B-P-Cu soft magnetic powder cores utilizing magnetic metallic glass as a binder

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

We report on the fabrication and properties of soft magnetic powder cores with superior mechanical strength as well as low core loss (W). Development of such cores is important for applications in automobiles/devices operating in motion. High saturation magnetic flux density (Bs) Fe-Si-B-P-Cu powder was sintered with Fe55C10B5P10Ni15Mo5 metallic glass (MG) powder in its supercooled liquid state by spark plasma sintering. The sintered cores are made from the nanocrystalline powder particles of Fe-Si-B-P-Cu alloy, which are separated through a magnetic Fe55C10B5P10Ni15Mo5 MG alloy. Low W of ∼ 2.2 W/kg (at 1T and 50 Hz), and high fracture strength (yielding stress ∼500 MPa), which is an order of magnitude higher than the conventional powder cores, were obtained. Stronger metal-metal bonding and magnetic nature of MG binder (which is very different than the conventional polymer based binders) are responsible for the superior mechanical and magnetic properties. The MG binder not only helps in improving the mechanical properties but it also enhances the overall Bs of the core.

Original languageEnglish
Article number055934
JournalAIP Advances
Volume6
Issue number5
DOIs
Publication statusPublished - 2016 May 1

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Mechanically strong nanocrystalline Fe-Si-B-P-Cu soft magnetic powder cores utilizing magnetic metallic glass as a binder'. Together they form a unique fingerprint.

Cite this