Mechanical properties of Ir-Nb alloys containing Ni and Al

X. H. Yu, Y. Yamabe-Mitarai, S. Nakazawa, Y. Ro, H. Harada

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Two alloys made by adding 5 or 10 at. pct, respectively, of Ni-18.9 at. pct Al to an Ir-15 at. pct Nb alloy were investigated. The microstructure and compressive strength at temperatures between room temperature and 1800 °C were investigated to evaluate the potential of these alloys for ultra-high-temperature use. Their microstructural evolution indicated that the two alloys formed fcc and L12-Ir3Nb two-phase structures. The fcc and L12 two-phase structures were examined by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The 0.2 pct flow stresses were above 1000 MPa at temperatures up to 1200 °C, about 150 MPa at 1500 °C, and over 100 MPa at 1800 °C. The strength of the quaternary Ir-base alloys at 1200 °C was even higher than that of Ir-base binary and ternary alloys. And the strength of quaternary Ir-Nb-Ni-Al was equivalent to that of the Ir-15 at. pct Nb binary alloy at 1800 °C. The compressive ductility of quatern ary (around 20 pct) was improved drastically compared with that of the Ir-base binary alloy (lower than 10 pct) and the ternary Ir-base alloys (about 11 pct). An excellent balance of high-temperature strength and ductility was obtained in the alloy with 10 at. pct Ni-18.9 at. pct Al. The effect of Ni and Al on the strength of the Ir-Nb binary alloy is discussed.

Original languageEnglish
Article number225
Pages (from-to)1347-1353
Number of pages7
JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Volume32
Issue number6
DOIs
Publication statusPublished - 2001 Jan 1
Externally publishedYes

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys

Fingerprint Dive into the research topics of 'Mechanical properties of Ir-Nb alloys containing Ni and Al'. Together they form a unique fingerprint.

  • Cite this