Measurement of the instantaneous detailed flame front structure of syngas turbulent premixed flames at high pressure

Jinhua Wang, Meng Zhang, Zuohua Huang, Taku Kudo, Hideaki Kobayashi

Research output: Contribution to conferencePaperpeer-review

Abstract

Instantaneous detailed flame front structure of syngas turbulent premixed flames was investigated and compared to that of CH4/air flames. Results show that the flame front of turbulent premixed flames at high pressure is a wrinkled flame front with small scale convex and concave structures superimposed with large scale flame branches. The convex structures are much more frequent than the concave ones on flame front which reflects a general characteristic of the turbulent premixed flames at high pressure. The syngas flames possess much wrinkled flame front with much smaller fine cusps structure compared to that of CH4/air flames and the main difference is on the convex structure. The effect of turbulence on the general wrinkled scale of flame front is much weaker than that of the smallest wrinkled scale. The general wrinkled scale is mainly dominated by the turbulence vortex scale, while, the smallest wrinkled scale is determined by the flame intrinsic instability. The effect of flame intrinsic instability on flame front of turbulent premixed flame is mainly on the formation of a large number of convex cusps structure propagating to the unburned reactants and enlarge the effective contact surface between flame front and unburned reactants.

Original languageEnglish
Publication statusPublished - 2013 Jan 1
Event9th Asia-Pacific Conference on Combustion, ASPACC 2013 - Gyeongju, Korea, Republic of
Duration: 2013 May 192013 May 22

Other

Other9th Asia-Pacific Conference on Combustion, ASPACC 2013
CountryKorea, Republic of
CityGyeongju
Period13/5/1913/5/22

ASJC Scopus subject areas

  • Environmental Engineering

Fingerprint Dive into the research topics of 'Measurement of the instantaneous detailed flame front structure of syngas turbulent premixed flames at high pressure'. Together they form a unique fingerprint.

Cite this