Measurement of electron spin states in a semiconductor quantum well using tomographic Kerr rotation

Takahiro Inagaki, Hideo Kosaka, Yoshiaki Rikitake, Hiroshi Imamura, Yasuyoshi Mitsumori, Keiichi Edamatsu

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Spin coherence is essential for spin-based quantum information technology. The conventional spin measurement technique, however, requires an extra step of spin manipulation or precession to measure the electron spin coherence. To measure the electron spin coherence directly, we have developed the tomographic Kerr rotation (TKR) method, which is based on the magneto-optical Kerr effect on the condition of the coherent transfer of light polarization states into electron spin states in a GaAs/AlGaAs quantum well. The TKR method allows measurement of the coherent superposition state of electron spins l±y>e = (l↑>e±il↓> e)/√2 in addition to conventionally measured ±z states (l↑>e or l↓>e) (which merely indicate the population of electron spins). Here we demonstrate that electron spin coherence can be measured by linearly polarized probe light to show that TKR is independent of the choice of probe light polarization. We also describe a method to distinguish TKR from the conventional magnetic circular dichroism (MCD) effect.

Original languageEnglish
Article number04DJ09
JournalJapanese journal of applied physics
Volume49
Issue number4 PART 2
DOIs
Publication statusPublished - 2010 Apr

ASJC Scopus subject areas

  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Measurement of electron spin states in a semiconductor quantum well using tomographic Kerr rotation'. Together they form a unique fingerprint.

Cite this