Mapping residual stress distributions at the micron scale in amorphous materials

Bartlomiej Winiarski, Richard M. Langford, Jiawan Tian, Yoshihiko Yokoyama, Peter K. Liaw, Philip J. Withers

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)

Abstract

Residual stresses in crystalline or glassy materials often play a key role in the performance of advanced devices and components. However, stresses in amorphous materials cannot easily be determined at the micron scale by diffraction, or by other conventional laboratory methods. In this article, a technique for mapping residual stress profiles in amorphous materials with high spatial definition is presented. By applying a focused ion beam (FIB)-based semidestructive mechanical relaxation method, the stresses are mapped in a peened and fatigued bulk metallic glass (BMG) (Zr50Cu 40Al10 at. pct). The residual stresses are inferred using finite element analysis (FEA) of the surface relaxations, as measured by digital image correlation (DIC), that occur when a microslot is micromachined by FIB. Further, we have shown that acceptable accuracy can in most cases be achieved using a simple analytical model of the slot. It was found that the fatigue cycling significantly changes the distribution of compressive residual stresses with depth in the plastically deformed surface layer. Our observations point to the scalability of this method to map residual stresses in volumes as small as 1 × 1 × 0.2 μm3 or less.

Original languageEnglish
Pages (from-to)1743-1751
Number of pages9
JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Volume41
Issue number7
DOIs
Publication statusPublished - 2010 Jul
Externally publishedYes

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys

Fingerprint Dive into the research topics of 'Mapping residual stress distributions at the micron scale in amorphous materials'. Together they form a unique fingerprint.

Cite this