Magnetizations and de Haas-van Alphen oscillations in massive Dirac fermions

Research output: Contribution to journalArticlepeer-review

Abstract

We theoretically study magnetic field, temperature, and energy band-gap dependences of magnetizations in the Dirac fermions. We use the zeta function regularization to obtain analytical expressions of thermodynamic potential, from which magnetization of graphene for strong field/low temperature and weak field/high temperature limits are calculated. Further, we generalize the result by considering the effects of impurity on orbital susceptibility of graphene. In particular, we show that in the presence of impurity, the susceptibility follows a scaling law which can be approximated by the Faddeeva function. In the case of massive Dirac fermions, we show that a large band gap gives a robust magnetization with respect to temperature and impurity. In the doped Dirac fermion, we discuss the dependences of period and amplitude of the de Haas-van Alphen oscillation on band gap.

Original languageEnglish
Article number245408
JournalPhysical Review B
Volume103
Issue number24
DOIs
Publication statusPublished - 2021 Jun 15

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Magnetizations and de Haas-van Alphen oscillations in massive Dirac fermions'. Together they form a unique fingerprint.

Cite this