Magnetic structure and high-field magnetization of the distorted kagome lattice antiferromagnet Cs2Cu3SnF12

K. Matan, T. Ono, G. Gitgeatpong, K. De Roos, P. Miao, S. Torii, T. Kamiyama, A. Miyata, A. Matsuo, K. Kindo, S. Takeyama, Y. Nambu, P. Piyawongwatthana, T. J. Sato, H. Tanaka

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

High-resolution time-of-flight powder neutron diffraction and high-field magnetization were measured to investigate the magnetic structure and existence of a field-induced magnetic phase transition in the distorted kagome antiferromagnet Cs2Cu3SnF12. Upon cooling from room temperature, the compound undergoes a structural phase transition at Tt=185K from the rhombohedral space-group R3̄m with the perfect kagome spin network to the monoclinic space-group P21/n with the distorted kagome planes. The distortion results in three inequivalent exchange interactions among the S=1/2Cu2+ spins that magnetically order below TN=20.2K. Magnetization measured with a magnetic field applied within the kagome plane reveals small in-plane ferromagnetism resulting from spin canting. On the other hand, the out-of-plane magnetization does not show a clear hysteresis loop of the ferromagnetic component nor a prominent anomaly up to 170 T with the exception of the subtle kneelike bend around 90 T, which could indicate the 1/3 magnetization plateau. The combined analysis using the irreducible representations of the magnetic space groups and magnetic structure refinement on the neutron powder-diffraction data suggests that the magnetic moments order in the magnetic space-group P21′/n′ with the all-in-all-out spin structure, which by symmetry allows for the in-plane canting, consistent with the in-plane ferromagnetism observed in the magnetization.

Original languageEnglish
Article number224404
JournalPhysical Review B
Volume99
Issue number22
DOIs
Publication statusPublished - 2019 Jun 3

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Magnetic structure and high-field magnetization of the distorted kagome lattice antiferromagnet Cs2Cu3SnF12'. Together they form a unique fingerprint.

Cite this