Magnetic properties of transition-metal-doped Zn1-x Tx O (T=Cr, Mn, Fe, Co, and Ni) thin films with and without intrinsic defects: A density functional study

Qian Wang, Qiang Sun, Puru Jena, Y. Kawazoe

Research output: Contribution to journalArticlepeer-review

85 Citations (Scopus)

Abstract

Theoretical calculations based on density-functional theory and generalized gradient approximation have been carried out in studying the electronic structure and magnetic properties of transition-metal-doped Zn1-x Tx O (T=Cr, Mn, Fe, Co, and Ni) (11 2̄ 0) thin films systematically with and without intrinsic point defects (e.g., vacancies and interstitials), and as function of concentration and distribution of dopants and vacancies. Using large supercells and geometry optimization without symmetry constraint, we are able to determine the sites that metal atoms prefer to occupy, their tendency to cluster, the preferred magnetic coupling between magnetic moments at transition-metal sites, and the effect of intrinsic point defects on the nature of their coupling. Except for Mn atom, which distributes uniformly in ZnO thin films in dilute condition, transition-metal atoms occupying Zn sites prefer to reside on the surface and couple antiferromagnetically. The presence of native point defects has a large effect on the ground-state magnetic structure. In particular, p -type defects such as Zn vacancies play a crucial role in tuning and stabilizing ferromagnetism in Zn1-x Tx O thin films (T=Cr, Mn, Fe, and Ni), while n -type defects such as O vacancies or Zn interstitials greatly enhance the ferromagnetic coupling in Zn1-x Cox O thin films. The present study provides a clear insight into the numerous conflicting experimental results on the magnetic properties of T -doped ZnO systems.

Original languageEnglish
Article number115407
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume79
Issue number11
DOIs
Publication statusPublished - 2009 Mar 3
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Magnetic properties of transition-metal-doped Zn1-x Tx O (T=Cr, Mn, Fe, Co, and Ni) thin films with and without intrinsic defects: A density functional study'. Together they form a unique fingerprint.

Cite this