Magnetic configuration of submicron-sized magnetic patterns in domain wall motion memory

Norikazu Ohshima, Hideaki Numata, Shunsuke Fukami, Kiyokazu Nagahara, Tetsuhiro Suzuki, Nobuyuki Ishiwata, Keiki Fukumoto, Toyohiko Kinoshita, Teruo Ono

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

We observed magnetic configuration and its change by external magnetic fields in submicron-sized U- and H-shaped NiFe patterns with an x-ray magnetic circular dichroism photoemission electron microscope. The microscope images showed the formation of a single domain wall (DW) with transverse structure at one corner of the U- and H-shaped patterns by applying the magnetic field from the oblique direction. By applying the magnetic field from the direction parallel to a horizontal bar in the patterns, the magnetic configuration in the U-shaped pattern was changed and four patterns were formed: (1) the DW moved from one trap site to another, (2) the DW moved beyond the trap site and formed a single domain, (3) the DW moved and stopped between the trap sites, and (4) the DW remained at the initial position. Only pattern (1) showed reversible DW motion, although pattern (2) was predominantly formed. In contrast, the magnetization configurations showed pattern (1), and reversible DW motion was observed for more than 80% of the H-shaped patterns. Micromagnetic simulation revealed that the DW in the U-shaped pattern was not sufficiently fixed at the corner and easily moved and vanished at the edge of the patterns because the magnetization in the two parallel bars rotated with a magnetic field. The DW was trapped with sufficient strength at the corner, and DW motion occurred only between the trap sites for the H-shaped patterns. The DW motion process was observed with an in situ magnetic field using the x-ray magnetic circular dichroism photoemission electron microscope and the process could be optimized by controlling the pattern shape.

Original languageEnglish
Article number103912
JournalJournal of Applied Physics
Volume107
Issue number10
DOIs
Publication statusPublished - 2010 May 15
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Magnetic configuration of submicron-sized magnetic patterns in domain wall motion memory'. Together they form a unique fingerprint.

Cite this