Macro- and atomic-scale observations of a one-dimensional heterojunction in a nickel and palladium nanowire complex

Masanori Wakizaka, Shohei Kumagai, Hashen Wu, Takuya Sonobe, Hiroaki Iguchi, Takefumi Yoshida, Masahiro Yamashita, Shinya Takaishi

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

The creation of low-dimensional heterostructures for intelligent devices is a challenging research topic; however, macro- and atomic-scale connections in one-dimensional (1D) electronic systems have not been achieved yet. Herein, we synthesize a heterostructure comprising a 1D Mott insulator [Ni(chxn)2Br]Br2 (1; chxn = 1R-2R-diaminocyclohexane) and a 1D Peierls or charge-density-wave insulator [Pd(chxn)2Br]Br2 (2) using stepwise electrochemical growth. It can be considered as the first example of electrochemical liquid-phase epitaxy applied to molecular-based heterostructures with a macroscopic scale. Moreover, atomic-resolution scanning tunneling microscopy images reveal a modulation of the electronic state in the heterojunction region with a length of five metal atoms (~ 2.5 nm), that is a direct evidence for the atomic-scale connection of 1 and 2. This is the first time that the heterojunction in the 1D chains has been shown and examined experimentally at macro- and atomic-scale. This study thus serves as proof of concept for heterojunctions in 1D electronic systems.

Original languageEnglish
Article number1188
JournalNature communications
Volume13
Issue number1
DOIs
Publication statusPublished - 2022 Dec

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • General
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Macro- and atomic-scale observations of a one-dimensional heterojunction in a nickel and palladium nanowire complex'. Together they form a unique fingerprint.

Cite this