Localized rotating-modes in capacitively coupled intrinsic Josephson junctions: Systematic study of branching structure and collective dynamical instability

M. Machida, T. Koyama

Research output: Contribution to journalArticle

50 Citations (Scopus)

Abstract

A variety of the I-V characteristics observed in a stack of intrinsic Josephson junctions is systematically explained in terms of the dynamics of the localized rotating mode in the discrete nonlinear systems. We clarify the effect of the capacitive coupling constant on the I-V characteristics, using the capacitively coupled Josephson junction model. The branch structure in the I-V characteristics changes from an assembly of equidistance branches to a single hysteresis-loop-like structure as the capacitive coupling constant increases. This behavior is in accordance with experiments. We predict that dynamical transitions between collective rotating states take place in the resistive state of a stack of intrinsic Josephson junctions in the strong capacitive coupling regime. These transitions create step-like structure in the I-V characteristics, which is observed in La1-xSrxCuO4-δ.

Original languageEnglish
Article number024523
Pages (from-to)024523-1-024523-6
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume70
Issue number2
DOIs
Publication statusPublished - 2004 Jul 1

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Localized rotating-modes in capacitively coupled intrinsic Josephson junctions: Systematic study of branching structure and collective dynamical instability'. Together they form a unique fingerprint.

  • Cite this