Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles

Eiichiro Ono, Masayoshi Hatayama, Yuri Isono, Takuya Sato, Ryoko Watanabe, Keiko Yonekura-Sakakibara, Masako Fukuchi-Mizutani, Yoshikazu Tanaka, Takaaki Kusumi, Tokuzo Nishino, Toru Nakayama

Research output: Contribution to journalArticlepeer-review

74 Citations (Scopus)

Abstract

Aureusidin synthase, a polyphenol oxidase (PPO), specifically catalyzes the oxidative formation of aurones from chalcones, which are plant flavonoids, and is responsible for the yellow coloration of snapdragon (Antirrhinum majus) flowers. All known PPOs have been found to be localized in plastids, whereas flavonoid biosynthesis is thought to take place in the cytoplasm [or on the cytoplasmic surface of the endoplasmic reticulum (ER)]. However, the primary structural characteristics of aureusidin synthase and some of its molecular properties argue against localization of the enzyme in plastids and the cytoplasm. In this study, the subcellular localization of the enzyme in petal cells of the yellow snapdragon was investigated. Sucrose-density gradient and differential centrifugation analyses suggested that the enzyme (the 39-kDa mature form) is not located in plastids or on the ER. Transient assays using a green fluorescent protein (GFP) chimera fused with the putative propeptide of the PPO precursor suggested that the enzyme was localized within the vacuole lumen. We also found that the necessary information for vacuolar targeting of the PPO was encoded within the 53-residue N-terminal sequence (NTPP), but not in the C-terminal sequence of the precursor. NTPP-mediated ER-to-Golgi trafficking to vacuoles was confirmed by means of the co-expression of an NTPP-GFP chimera with a dominant negative mutant q1of the Arabidopsis GTPase q2Sar1 or with a monomeric red fluorescent protein (mRFP)-fused Golgi marker q3(an H +-translocating inorganic pyrophosphatase of Arabidopsis). We identified a sequence-specific vacuolar sorting determinant in the NTPP of the precursor. We have demonstrated the biosynthesis of a flavonoid skeleton in vacuoles. The findings of this metabolic compartmentation may provide a strategy q4for overcoming the biochemical instability of the precursor chalcones in the cytoplasm, thus leading to the efficient accumulation of aurones in the flower.

Original languageEnglish
Pages (from-to)133-143
Number of pages11
JournalPlant Journal
Volume45
Issue number2
DOIs
Publication statusPublished - 2006 Jan

Keywords

  • Aurone
  • Biosynthesis of flavonoids
  • Flower coloration
  • Polyphenol oxidase
  • Subcellular localization
  • Vacuole

ASJC Scopus subject areas

  • Genetics
  • Plant Science
  • Cell Biology

Fingerprint

Dive into the research topics of 'Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles'. Together they form a unique fingerprint.

Cite this