Local thermal transport of liquid alkanes in the vicinity of α-quartz solid surfaces and thermal resistance over the interfaces: A molecular dynamics study

Hari Krishna Chilukoti, Gota Kikugawa, Masahiko Shibahara, Taku Ohara

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Thermal transport in liquid n-alkanes in the vicinity of α-quartz substrates and thermal boundary resistance between the liquid n-alkanes and the α-quartz substrates have been investigated using nonequilibrium molecular dynamics simulations. The study considers two liquid alkanes, methane and decane, and three crystal orientations of α-quartz substrate terminated with -H or -OH groups. The local thermal conductivity (LTC), defined in the same manner as with macroscopic thermal conductivity, is used to measure the efficiency of thermal energy transport of the liquids in the vicinity of the solid surface. The variations in the LTC of the liquid alkanes in the layered region next to the surface of the substrate were examined. The modeled LTC values of the alkanes were found to oscillate in the solid-liquid interface region. These fluctuations were typically proportional to the oscillations in the local density profile. The correlation between the thermal conductivity and density was linear in the bulk liquid region. The correlation between LTC and local density in the first adsorption layer is not a straightforward extension of that of the bulk liquid, which is mostly due to the specific molecular-scale ordering structure that occurs in the liquids formed by the proximity of the solid substrate. Thermal boundary resistance between the liquid alkanes and the quartz substrate was also evaluated. It was observed that thermal boundary resistance is relatively large when the in-plane molecular-scale structure in the first adsorption layer is sparse, and is lower when the liquid structure is dense in the adsorption layer.

Original languageEnglish
Article number052404
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume91
Issue number5
DOIs
Publication statusPublished - 2015 May 20

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Local thermal transport of liquid alkanes in the vicinity of α-quartz solid surfaces and thermal resistance over the interfaces: A molecular dynamics study'. Together they form a unique fingerprint.

Cite this