Local segregation in Cu-In precursors and its effects on microstructures of selenized CuInSe2 thin films

Ling Fang, Gong Zhang, Da Ming Zhuang, Ming Zhao, Min Sheng Wu

Research output: Contribution to journalArticlepeer-review

Abstract

Local segregation in Cu-In precursors and its effects on the element distribution and microstructures of selenized CuInSe2 thin films were investigated. Cu-In precursors with an ideal total mole ratio of Cu to In of 0.92 were prepared by middle frequency alternating current magnetron sputtering with Cu-In alloy target, then CuInSe2 absorbers for solar cells were formed by selenization process in selenium atmosphere. Scanning electron microscope and energy dispersive X-ray spectroscope were used respectively to observe the surface morphologies and determine the compositions of both Cu-In precursors and CuInSe2 thin films. Their microstructures were characterized by X-ray diffractometry and Raman spectroscope. The results show that Cu-In precursors are mainly composed of Cu11In9 phase with In-rich solid solution. Stoichiometric CuInSe2 thin films with a homogeneous element distribution and single chalcopyrite phase can be synthesized from a segregated Cu-In precursor film with an ideal total mole ratio of Cu to In of 0.92. CuInSe2 thin film shows P-type conductivity and its resistivity reaches 1.2 × 103 Ω·cm.

Original languageEnglish
Pages (from-to)13-16
Number of pages4
JournalJournal of Central South University of Technology (English Edition)
Volume12
Issue number1
Publication statusPublished - 2005 Feb

Keywords

  • Cu-In precursor
  • CuInSe thin film
  • Magnetron sputtering
  • Selenization
  • Solar cell

ASJC Scopus subject areas

  • Metals and Alloys

Fingerprint Dive into the research topics of 'Local segregation in Cu-In precursors and its effects on microstructures of selenized CuInSe<sub>2</sub> thin films'. Together they form a unique fingerprint.

Cite this