Local hydrogel fabrication based on electrodeposition with a large-scale integration (LSI)-based amperometric device

Kosuke Ino, Mayuko Terauchi, Mai Gakumasawa, Noriko Taira, Atsushi Suda, Ryota Kunikata, Tomokazu Matsue, Hitoshi Shiku

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Addressable electrode arrays are widely used in a number of applications, such as electrochemical imaging and high-throughput assays. Recently, large-scale integration (LSI) technologies have been used to prepare electrochemical devices containing signal amplifiers and switching elements, such that multiple highly sensitive sensors can be incorporated into these devices. Because these devices induce chemical reactions at the target electrodes, biomaterials such as hydrogels can be electrochemically fabricated. In this study, we present a new biofabrication strategy using the electrochemical device. We used an LSI device to locally electrodeposit chitosan hydrogels at the target electrodes, with the goal of fabricating the designed hydrogels. The hydrogels were fabricated via the generation of Cl2 at the anodes where a potential of 0.95 V was applied. The biofabrication method was utilized for three bioapplications. First, three-dimensionally designed chitosan hydrogels, for example apple-shaped and layered hydrogels were fabricated on this device by electrodepositing them for 10–30 s. In order to demonstrate biosensing, glucose oxidase and horseradish peroxidase were modified at the target electrodes through hydrogel electrodeposition; consequently, droplets containing glucose and H2O2 were electrochemically imaged at the same time using the electrochemicolor imaging technique we developed. Since this system can be used to fabricate hydrogels containing enzymes only at the target sensors, glucose and H2O2 were separately monitored. The detection limit of glucose was less than 0.5 mM. In addition, the chitosan hydrogels were electrodeposited only in the target areas such that cells only adhering at unmodified areas, resulting in cell patterning. We show that the LSI device is useful for the fabrication of local hydrogels for several bioapplications such as biosensing and cell culturing.

Original languageEnglish
Pages (from-to)95-101
Number of pages7
JournalSensors and Actuators, B: Chemical
Volume277
DOIs
Publication statusPublished - 2018 Dec 20

Keywords

  • Cell patterning
  • Chitosan hydrogel
  • Electrochemical imaging of multiple analytes
  • Hydrogel electrodeposition
  • Large-scale integration (LSI)-based amperometric device

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Local hydrogel fabrication based on electrodeposition with a large-scale integration (LSI)-based amperometric device'. Together they form a unique fingerprint.

Cite this