Laser reduced graphene oxide-based interdigitated electrode for sensor applications

Akira Watanabe, Jinguang Cai, Sayaka Ogawa, Eiji Aoyagi, Shun Ito

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Laser reduced graphene oxide-based interdigitated microelectrodes were functionalized with TiO2 nanoparticles towards sensor applications. Two kinds of interdigitated microelectrodes were prepared by laser direct writing using graphene oxide (GO) and TiO2 nanoparticles. One is a TiO2 nanoparticle-deposited interdigitated microelectrode consisting of GO and laser-induced reduced graphene oxide (rGO), where the rGO/GO/rGO structure was prepared by laser direct writing on a GO-coated PET film and then a TiO2 sol solution was drop-casted on the electrode. Another is a TiO2/rGO hybrid interdigitated microelectrode prepared by laser direct writing on a TiO2 nanoparticle-GO hybrid film. The UV light sensitivity of the TiO2 nanoparticle-deposited rGO/GO/rGO interdigitated microelectrode and the oxygen quenching behavior were applied to oxygen sensing. The output voltage from the TiO2 nanoparticle-deposited rGO/GO/rGO structure in the AC detection mode under 369 nm LED irradiation showed clear relationship with the degree of vacuum. The sensing behavior was based on the photo-generated carrier quenching by oxygen. The irradiation of a 405 nm blue violet laser to a TiO2 nanoparticle-GO hybrid film caused the crystal phase transition from anatase to rutile TiO2 accompanying the melting of anatase nanoparticles. The TiO2/rGO hybrid interdigitated microelectrode consisting of anatase TiO2, rutile TiO2, and rGO was prepared by laser direct writing. The TiO2/rGO hybrid interdigitated microelectrode showed the response to visible light irradiation.

Original languageEnglish
Title of host publicationLaser-Based Micro- and Nanoprocessing XIII
EditorsUdo Klotzbach, Akira Watanabe, Rainer Kling
PublisherSPIE
ISBN (Electronic)9781510624542
DOIs
Publication statusPublished - 2019
EventLaser-Based Micro- and Nanoprocessing XIII 2019 - San Francisco, United States
Duration: 2019 Feb 52019 Feb 7

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10906
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceLaser-Based Micro- and Nanoprocessing XIII 2019
CountryUnited States
CitySan Francisco
Period19/2/519/2/7

Keywords

  • Graphene oxide
  • Interdigitated microelectrode
  • Laser direct writing
  • Oxygen sensor
  • Photosensor
  • Reduced graphene oxide
  • TiO2 nanoparticle

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Laser reduced graphene oxide-based interdigitated electrode for sensor applications'. Together they form a unique fingerprint.

Cite this