Key amino acid residues required for aryl migration catalysed by the cytochrome P450 2-hydroxyisoflavanone synthase

Yuji Sawada, Kengo Kinoshita, Tomoyoshi Akashi, Toshio Aoki, Shin Ichi Ayabe

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)

Abstract

Isoflavonoids are distributed predominantly in leguminous plants, and play pivotal roles in the interaction of host plants with biological environments. Isoflavones in the diet also have beneficial effects on human health as phytoestrogens. The isoflavonoid skeleton is constructed by the CYP93C subfamily of cytochrome P450s in plant cells. The reaction consists of hydroxylation of the flavanone molecule at C-2 and an intramolecular 1, 2-aryl migration from C-2 to C-3 to yield 2-hydroxyisoflavanone. In this study, with the aid of alignment of amino acid sequences of CYP93 family P450s and a computer-generated putative stereo structure of the protein, candidates for key amino acid residues in CYP93C2 responsible for the unique aryl migration in 2-hydroxyisoflavanone synthase reaction were identified. Microsomes of recombinant yeast cells expressing mutant proteins of CYP93C2 were prepared, and their catalytic activities tested. The reaction with the mutant in which Ser 310 in the centre of the I-helix was converted to Thr yielded increased formation of 3-hydroxyflavanone, a by-product of the 2-hydroxyisoflavanone synthase reaction, in addition to the major isoflavonoid product. More dramatically, the mutant in which Lys 375 in the end of β-sheet 1-4 was replaced with Thr produced only 3-hydroxyflavanone and did not yield the isoflavonoid any longer. The roles of these amino acid residues in the catalysis and evolution of isoflavonoid biosynthesis are discussed.

Original languageEnglish
Pages (from-to)555-564
Number of pages10
JournalPlant Journal
Volume31
Issue number5
DOIs
Publication statusPublished - 2002 Sep
Externally publishedYes

Keywords

  • CYP93C subfamily
  • Evolution
  • Homology modelling
  • Intramolecular aryl migration
  • Isoflavonoid
  • Site-directed mutagenesis

ASJC Scopus subject areas

  • Genetics
  • Plant Science
  • Cell Biology

Fingerprint Dive into the research topics of 'Key amino acid residues required for aryl migration catalysed by the cytochrome P450 2-hydroxyisoflavanone synthase'. Together they form a unique fingerprint.

Cite this