Abstract
The cuprate high temperature superconductors exhibit a pronounced trend in which the superconducting transition temperature Tc increases with the number of CuO2 planes n in the crystal structure. We compare the magnetic excitation spectrum of Bi2+xSr2-xCuO6+δ (Bi-2201) and Bi2Sr2Ca2Cu3O10+δ (Bi-2223), with n=1 and 3, respectively, using Cu L3-edge resonant inelastic x-ray scattering. Near the antinodal zone boundary we find the paramagnon energy in Bi-2223 is substantially higher than that in Bi-2201, indicating that multilayer cuprates host stronger effective magnetic exchange interactions, providing a possible explanation for the Tc vs n scaling. In contrast, the nodal direction exhibits very strongly damped, almost nondispersive excitations. We argue that this implies that the magnetism in the doped cuprates is partially itinerant in nature.
Original language | English |
---|---|
Article number | 220506 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 90 |
Issue number | 22 |
DOIs | |
Publication status | Published - 2014 Dec 4 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics