Isolation and Biological Activity of 8- Epitetrodotoxin and the Structure of a Possible Biosynthetic Shunt Product of Tetrodotoxin, Cep-226A, from the Newt Cynops ensicauda popei

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Tetrodotoxin (TTX, 1), a potent neurotoxin, has been found in various animal species in both marine and terrestrial environments. In this study, a new TTX analogue, 8-epiTTX (2), and a possible biosynthetic shunt compound of TTX, Cep-226A (3), were isolated from the newt Cynops ensicauda popei. The voltage-gated sodium ion channel (Nav) blocking activity of 2 and 6-epiTTX (4), a known analogue, were investigated by a colorimetric cell-based assay and compared with that of 1. The EC50 values for 2 and 4 were determined to be 110 ± 40 and 33 ± 11 nM, respectively, which were larger than that of 1 (1.9 ± 0.7 nM). The results indicated that the equatorial hydroxy group at C-8 in TTX significantly contributes to its Nav blocking activity, whereas the 6-epimer of TTX retains substantial activity, consistent with its previously reported toxicity in mice and binding affinity to rat brain membrane preparations. The presence of these epimers of TTX (2 and 4) and Cep-226A (3) in newts supports our hypothesis that TTX is derived from a monoterpene in terrestrial environments.

Original languageEnglish
Pages (from-to)1656-1663
Number of pages8
JournalJournal of Natural Products
Volume82
Issue number6
DOIs
Publication statusPublished - 2019 Jun 28

ASJC Scopus subject areas

  • Analytical Chemistry
  • Molecular Medicine
  • Pharmacology
  • Pharmaceutical Science
  • Drug Discovery
  • Complementary and alternative medicine
  • Organic Chemistry

Fingerprint Dive into the research topics of 'Isolation and Biological Activity of 8- Epitetrodotoxin and the Structure of a Possible Biosynthetic Shunt Product of Tetrodotoxin, Cep-226A, from the Newt Cynops ensicauda popei'. Together they form a unique fingerprint.

Cite this