Abstract
A double pole pair milli-size rotor with 1 mm in outer diameter and 0.3 mm in inner diameter was fabricated from an isotropic laminated film magnet with a non-magnetic material. Permeance coefficient distribution together with static magnetic field of the film were also estimated by using 3-D and 2-D finite element model, and the average permeance coefficient, B/μoH, could be estimated as 18.7. A torque of the isotropic film magnet with the remanence value of approximately 1 T was measured under the different field strength, and a relative torque and relative torque constant, dT/dH-gradient, of the above-mentioned magnet with the double pole pair increased by 172 % and 152 %, respectively, compared with those of an anisotropic bulk magnet with a single pole pair whose remanence value was approximately 1.3 T. It was found that use of isotropic laminated film magnet is effective in obtaining a micro multi-polarly magnetized rotor with highly dense torque.
Original language | English |
---|---|
Article number | 5467532 |
Pages (from-to) | 2012-2015 |
Number of pages | 4 |
Journal | IEEE Transactions on Magnetics |
Volume | 46 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2010 Jun 1 |
Keywords
- Isotropic film magnet
- Laminated film magnet
- MEMS motor
- Micro DC brushless motor
- Micro multi-polarly magnetized rotor
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Electrical and Electronic Engineering