Investigation of the ion storage/transfer behavior in an electrical double- layer capacitor by using ordered microporous carbons as model materials

Hirotomo Nishihara, Hiroyuki Itoi, Taichi Kogure, Peng Xiang Hou, Hidekazu Touhara, Fujio Okino, Takashi Kyotani

Research output: Contribution to journalArticlepeer-review

121 Citations (Scopus)

Abstract

An ordered microporous carbon, which was prepared with zeolite as a template, was used as a model material to understand the ion storage/ transfer behavior in electrical double-layer capacitor (EDLC). Several types of such zeolite-templated carbons (ZTCs) with different structures (framework regularity, particle size and pore diameter) were prepared and their EDLC performances were evaluated in an organic electrolyte solution (1 <SC>M</SC> Et4NBF4/ propylene carbonate). Moreover, a simple method to evaluate a degree of wettability of microporous carbon with propylene carbonate was developed. It was found that the capacitance was almost proportional to the surface area and this linearity was retained even for the carbons with very high surface areas (&gt; 2000m2g-1). It has often been pointed out that thin pore walls limit capacitance and this usually gives rise to the deviation from linearity, but such a limitation was not observed in ZTCs, despite their very thin pore walls (a single graphene, ca. 0.34 nm). The present study clearly indicates that three-dimensionally connected and regularly arranged micro- pores were very effective at reducing ion-transfer resistance. Despite relatively small pore diameter ZTCs (ca. 1.2 nm), their power density remained almost unchanged even though the particle size was increased up to several microns. However, when the pore diameter became smaller than 1.2 nm, the power density was decreased due to the difficulty of smooth ion-transfer in such small micropores..

Original languageEnglish
Pages (from-to)5355-5363
Number of pages9
JournalChemistry - A European Journal
Volume15
Issue number21
DOIs
Publication statusPublished - 2009 May 18

Keywords

  • Carbon
  • Electrochemistry
  • Microporous materials
  • Template synthesis
  • Zeolites

ASJC Scopus subject areas

  • Catalysis
  • Organic Chemistry

Fingerprint Dive into the research topics of 'Investigation of the ion storage/transfer behavior in an electrical double- layer capacitor by using ordered microporous carbons as model materials'. Together they form a unique fingerprint.

Cite this