Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼

Xin Gao, Yuto Yamazaki, Yuta Tezuka, Jacopo Pieroni, Kae Ishii, Nanako Atsumi, Yoshikiyo Ono, Kei Omata, Ryo Morimoto, Yasuhiro Nakamura, Fumitoshi Satoh, Hironobu Sasano

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Cortisol-producing adrenocortical adenomas (CPAs) are associated with ACTH-independent Cushing's syndrome and histologically composed of two cellular subtypes: compact (lipid-poor) and clear (lipid-rich) tumor cells. However, the details of hormonal and biological activities of these tumor cells have remained unknown, especially in CPAs. CPAs frequently harbored unique histological features different from those of aldosterone-producing adenomas (APAs) including a senescent phenotype. Therefore, we explored the association between morphological features and the immunoreactivity of steroidogenic enzymes in CPAs with different genotypes and compared them with cellular senescence markers as well as clinicopathological factors of the cases. Hormonal activities (3βHSD, CYP21A, CYP17A1, CYP11B1 and DHEA-ST) and cellular senescence markers (p16, p21 and Ki-67) within different morphological features (clear and compact) were evaluated in 40 CPAs. CPA genotypes (PRKACA, GNAS and CTNNB1) were examined by Sanger sequencing and then compared them with the factors above. p21 immunoreactivity was significantly positively correlated with that of CYP21A (p = 0.0110), CYP17A1 (p = 0.0356) and DHEA-ST (p = 0.0420) but inversely with tumor size (p = 0.0015). CYP21A (p = 0.0016), CYP11B1 (p = 0.0001), CYP17A1 (p < 0.0001) and p16 (p = 0.0137) immunoreactivity were all significantly higher in compact cells than those in clear cells. CYP17A1 (p = 0.0056) and 3βHSD (p = 0.0437) immunoreactivity was significantly higher in PRKACA-mutated than wild type CPAs. p16 immunoreactivity and serum DHEA-S level were both significantly higher in GNAS-mutated than PRKACA-mutated (p = 0.0250) and wild type (p = 0.0180) CPAs. Results of our present study did demonstrate that compact tumor cells were hormonally active and more senescent than clear tumor cells in CPAs. PRKACA- and GNAS-mutated tumor cells were more hormonally active and senescent than those without mutations despite the similar morphological features. We herein proposed a novel histological classification of the tumor cell subtypes based on in situ cortisol excess, genotypes and the status of cell senescence in CPAs.

Original languageEnglish
Article number105764
JournalJournal of Steroid Biochemistry and Molecular Biology
Volume204
DOIs
Publication statusPublished - 2020 Nov

Keywords

  • CYP11B1
  • CYP17A
  • Cellular senescence
  • Compact and clear cells
  • Cortisol-producing adenoma
  • PRKACA

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Endocrinology
  • Clinical Biochemistry
  • Cell Biology

Fingerprint Dive into the research topics of 'Intratumoral heterogeneity of the tumor cells based on in situ cortisol excess in cortisol-producing adenomas; ∼An association among morphometry, genotype and cellular senescence∼'. Together they form a unique fingerprint.

Cite this