Interference experiment with asymmetric double slit by using 1.2-MV field emission transmission electron microscope

Ken Harada, Tetsuya Akashi, Kodai Niitsu, Keiko Shimada, Yoshimasa A. Ono, Daisuke Shindo, Hiroyuki Shinada, Shigeo Mori

    Research output: Contribution to journalArticlepeer-review

    7 Citations (Scopus)

    Abstract

    Advanced electron microscopy technologies have made it possible to perform precise double-slit interference experiments. We used a 1.2-MV field emission electron microscope providing coherent electron waves and a direct detection camera system enabling single-electron detections at a subsecond exposure time. We developed a method to perform the interference experiment by using an asymmetric double-slit fabricated by a focused ion beam instrument and by operating the microscope under a "pre-Fraunhofer" condition, different from the Fraunhofer condition of conventional double-slit experiments. Here, pre-Fraunhofer condition means that each single-slit observation was performed under the Fraunhofer condition, while the double-slit observations were performed under the Fresnel condition. The interference experiments with each single slit and with the asymmetric double slit were carried out under two different electron dose conditions: high-dose for calculation of electron probability distribution and low-dose for each single electron distribution. Finally, we exemplified the distribution of single electrons by color-coding according to the above three types of experiments as a composite image.

    Original languageEnglish
    Article number1008
    JournalScientific reports
    Volume8
    Issue number1
    DOIs
    Publication statusPublished - 2018 Dec 1

    ASJC Scopus subject areas

    • General

    Fingerprint

    Dive into the research topics of 'Interference experiment with asymmetric double slit by using 1.2-MV field emission transmission electron microscope'. Together they form a unique fingerprint.

    Cite this