Interface engineering through atomic dopants in HfO2-based gate stacks

H. Zhu, Ganpati Ramanath, R. Ramprasad

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Controlling the effective work function (eff) of metal electrodes is critical and challenging in metal-oxide-semiconductor field effect transistors. The introduction of atomic dopants (also referred to as "capping" layers) is an emerging approach to controllably modify eff. Here, we investigate the energetic preference of the location of La, Y, Sc, Al, Ce, Ti, and Zr as atomic dopants within a model Pt/HfO 2/Si stack and the resulting variation of eff using density functional theory calculations. Our results indicate that all the considered atomic dopants prefer to be situated at the interfaces. The dopant-induced variation of eff is found to be strongly correlated to the dopant electronegativity and location. Dopants at the metal/HfO2 interface decrease eff with increasing dopant electronegativity, while a contrary trend is seen for dopants at the Si/HfO2 interface. These results are consistent with available experimental data for La, Al, and Ti doping. Our findings, especially the identified correlations, have important implications for the further optimization and "scaling down" of transistors.

Original languageEnglish
Article number114310
JournalJournal of Applied Physics
Volume114
Issue number11
DOIs
Publication statusPublished - 2013 Sep 21
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Interface engineering through atomic dopants in HfO<sub>2</sub>-based gate stacks'. Together they form a unique fingerprint.

Cite this