Interactions of hydrogen with amorphous hafnium oxide

Moloud Kaviani, Valeri V. Afanas'Ev, Alexander L. Shluger

    Research output: Contribution to journalArticlepeer-review

    10 Citations (Scopus)

    Abstract

    We used density functional theory (DFT) calculations to study the interaction of hydrogen with amorphous hafnia (a-HfO2) using a hybrid exchange-correlation functional. Injection of atomic hydrogen, its diffusion towards electrodes, and ionization can be seen as key processes underlying charge instability of high-permittivity amorphous hafnia layers in many applications. Hydrogen in many wide band gap crystalline oxides exhibits negative-U behavior (+1 and -1 charged states are thermodynamically more stable than the neutral state). Our results show that in a-HfO2 hydrogen is also negative-U, with charged states being the most thermodynamically stable at all Fermi level positions. However, metastable atomic hydrogen can share an electron with intrinsic electron trapping precursor sites [Phys. Rev. B 94, 020103 (2016).2469-995010.1103/PhysRevB.94.020103] forming a [etr-+O-H] center, which is lower in energy on average by about 0.2 eV. These electron trapping sites can affect both the dynamics and thermodynamics of the interaction of hydrogen with a-HfO2 and the electrical behavior of amorphous hafnia films in CMOS devices.

    Original languageEnglish
    Article number075117
    JournalPhysical Review B
    Volume95
    Issue number7
    DOIs
    Publication statusPublished - 2017 Feb 8

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Condensed Matter Physics

    Fingerprint Dive into the research topics of 'Interactions of hydrogen with amorphous hafnium oxide'. Together they form a unique fingerprint.

    Cite this