Integrated active and semi-active control for seat suspension of a heavy duty vehicle

Donghong Ning, Shuaishuai Sun, Haiping Du, Weihua Li

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

In this article, an integrated active and semi-active seat suspension for heavy duty vehicles is proposed, and its prototype is built; an integrated control algorithm applied measurable variables (suspension relative displacement and seat acceleration) is designed for the proposed seat prototype. In this seat prototype, an active actuator with low maximum force output (70 N), which is insufficient for an active seat suspension to control the resonance vibration, is applied together with a rotary magnetorheological damper. The magnetorheological damper can suppress the high vibration energy in resonance frequency, and then a small active force can further improve the seat suspension performance greatly. The suspension’s dynamic property is tested with a MTS system, and its model is identified based on the testing data. A modified on–off controller is applied for the rotary magnetorheological damper. A H͚ controller with the compensation of a disturbance observer is used for the active actuator. Considering the energy saving, the control strategy is designed as that only when the magnetorheological damper is in the off state (0 A current), the active actuator will have active force output, or the active actuator is off. Both simulation and experiment are implemented to verify the proposed seat suspension and controller. In the sinusoidal excitations experiment, the acceleration transmissibility of integrated control seat has lowest value in resonance frequency and frequencies above the resonance, when compared with power on (0.7 A current), power off (0 A current) and semi-active control seat. In the random vibration experiment, the root mean square acceleration of integrated control seat suspension has 47.7%, 33.1% and 26.5% reductions when compared with above-mentioned three kinds of seat suspension. The power spectral density comparison indicates that the integrated seat suspension will have good performance in practical application. The integrated active and semi-active seat suspension can fill energy consumption gap between active and semi-active control seat suspension.

Original languageEnglish
Pages (from-to)91-100
Number of pages10
JournalJournal of Intelligent Material Systems and Structures
Volume29
Issue number1
DOIs
Publication statusPublished - 2018 Jan 1

Keywords

  • Active control
  • seat suspension
  • semi-active control
  • vibration control

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Integrated active and semi-active control for seat suspension of a heavy duty vehicle'. Together they form a unique fingerprint.

  • Cite this