Infrared spectroscopic observation of the McLafferty rearrangement in ionized 2-pentanone

Research output: Contribution to journalArticlepeer-review

Abstract

The McLafferty rearrangement is a well-known process in mass spectrometry. In ionization of organic molecules containing a carbonyl group, β cleavage occurs following transfer of a hydrogen atom of aliphatic CH at the γ position to the carbonyl group. Although the McLafferty rearrangement has undergone numerous mass spectrometric investigations, no spectroscopic investigation of the enolized radical cation generated in the hydrogen atom transfer has been carried out. 2-Pentanone is the simplest ketone containing CH bonds at the γ position. In this study, infrared predissociation spectroscopy for both neutral and ionized 2-pentanone in the gas phase through vacuum ultraviolet ionization detection is performed to investigate the ionization-induced isomerization and to observe the enolized product. An OH stretch band is observed in the infrared spectrum of ionized 2-pentanone, and this demonstrates its enolization accompanying the rearrangement of an alkyl hydrogen. The enolization of ionized 2-pentanone is theoretically supported by the reaction path search based on the anharmonic downward distortion following method.

Original languageEnglish
Pages (from-to)19230-19237
Number of pages8
JournalPhysical Chemistry Chemical Physics
Volume22
Issue number34
DOIs
Publication statusPublished - 2020 Sep 14

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Infrared spectroscopic observation of the McLafferty rearrangement in ionized 2-pentanone'. Together they form a unique fingerprint.

Cite this