Infrared reflection-absorption study of carbon monoxide adsorption on Fe/Pt(111) bimetallic surfaces

Toshimasa Wadayama, Hiroshi Osano, Toshiaki Maeyama, Hirosato Yoshida, Koji Murakami, Naoki Todoroki, Shogo Oda

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Infrared reflection-absorption spectroscopy (IRRAS) was used to investigate carbon monoxide (CO) adsorption on sub-monolayer (ML)-thick to 1.0 ML-thick Fe deposited Pt(111) bimetallic surfaces, that is, Fex/Pt(111) (x, Fe thickness in ML units), fabricated using molecular beam epitaxy at substrate temperatures of 343, 403, and 473 K. The 1.0 L CO exposure to a clean Pt(111) at room temperature yielded linearly bonded and bridge-bonded CO-Pt bands at 2093 and 1855 cm-1. The CO-Pt band intensities for the CO-exposed surfaces of the Fex/Pt(111) decreased with increasing Fe thickness. The CO-Pt bands almost disappeared, and the bridge-bonded CO-Fe band at 1950 cm -1 dominated the spectra for the Fe1.0ML/Pt(111) deposited at 343 K. In addition, the Fe deposition brought about a new absorption band at around 2060 cm-1; this band is predominant for the Fe 0.5MI/Pt(111) deposited at 473 K. The 1 ML-thick Fe deposition onto the 473 K Pt(111) engenders less-intense, rather broad absorption at 2050 cm-1, accompanied by a weak band attributable to bridge adsorption of CO on the surface Fe atoms. The IRRAS spectra for CO adsorption on the 0.6 nm and 0.3 nm-thick Pt grown on the Fe1.0ML/Pt(111), that is, Pt y/Fe1.0ML/Pt(111) (y, Pt thickness in nm units), respectively, showed single absorption bands at 2080 and 2070 cm-1. The reflection high-energy electron diffraction (RHEED) patterns for the Fe 1.0ML/Pt(111) deposited at 343 K gave rise to new RHEED streaks, outside the original streaks, attributable to the substrate Pt(111). In contrast, for Pty/Fe1.0ML/Pt(111) "sandwich" structures, the new streaks disappeared, leaving streaks that had slightly wider separation than that of the clean Pt(111). The Fe0.5ML/Pt(111) deposited at 473 K showed similar streaks to those of the Pt/Fe1.0ML/ Pt(111). The temperature-programmed desorption (TPD) spectrum of adsorbed CO on the Fe0.5ML/Pt(111) deposited at 473 K revealed a 40% weaker and 10 K lower desorption signal than those for the clean Pt(111). We discuss the CO adsorption behavior on the well-defined Fe deposited Pt(111) bimetallic surfaces.

Original languageEnglish
Pages (from-to)8944-8950
Number of pages7
JournalJournal of Physical Chemistry C
Volume112
Issue number24
DOIs
Publication statusPublished - 2008 Jun 19

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Infrared reflection-absorption study of carbon monoxide adsorption on Fe/Pt(111) bimetallic surfaces'. Together they form a unique fingerprint.

Cite this