In vivo assessment of the effect of controlled high- and low-frequency mechanical loading on peri-implant bone healing

Xiaolei Zhang, Katleen Vandamme, Antonia Torcasio, Toru Ogawa, G. Harry Van Lenthe, Ignace Naert, Joke Duyck

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

The aim of this study was to investigate the effect of controlled high- (HF) and low-frequency (LF) mechanical loading on peri-implant bone healing. Custom-made titanium implants were inserted in both tibiae of 69 adult Wistar rats. For every animal, one implant was loaded by compression through the axis of tibia (test), whereas the other one was unloaded (control). The test implants were randomly distributed among four groups receiving different loading regimes, which were determined by ex vivo calibration. Within the HF (40 Hz) or LF (2 Hz) loading category, the magnitudes were chosen as low- (LM) and high-magnitude (HM), respectively, leading to constant strain rate amplitudes for the two frequency groups. This resulted in the four loading regimes: (i) HF-LM (40 Hz-0.5 N); (ii) HF-HM (40 Hz-1 N); (iii) LF-LM (2 Hz-10 N); and (iv) LF-HM (2 Hz-20 N) loading. Loading was performed five times per week and lasted for one or four weeks. Tissue samples were processed for histology and histomorphometry (bone-to-implant contact, BIC; and peri-implant bone fraction, BF) at the cortical and medullar level. Data were analysed statistically with ANOVA and paired t-tests with the significance level set at 0.05. For the one-week experiments, an increased BF adjacent to the implant surface at the cortical level was exclusively induced by the LF-HM loading regime (2 Hz-20 N). Four weeks of loading resulted in a significant effect on BIC (and not on BF) in case of HF-LM loading (40 Hz-0.5 N) and LF-HM loading (2 Hz-20 N): BIC at the cortical level significantly increased under both loading regimes, whereas BIC at the medullar level was positively influenced only in case of HF-LM loading. Mechanical loading at both HF and LF affects osseointegration and peri-implant BF. Higher loading magnitudes (and accompanying elevated tissue strains) are required under LF loading to provoke a positive peri-implant bone response, compared with HF loading. A sustained period of loading at HF is needed to result in an overall enhanced osseointegration.

Original languageEnglish
Pages (from-to)1697-1704
Number of pages8
JournalJournal of the Royal Society Interface
Volume9
Issue number72
DOIs
Publication statusPublished - 2012 Jul 7

Keywords

  • Animal
  • Implant
  • Loading frequency
  • Mechanobiology
  • Osseointegration

ASJC Scopus subject areas

  • Biotechnology
  • Biophysics
  • Bioengineering
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'In vivo assessment of the effect of controlled high- and low-frequency mechanical loading on peri-implant bone healing'. Together they form a unique fingerprint.

  • Cite this