Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments

Toshikazu Akahori, Mitsuo Niinomi, Hisao Fukui, Michiharu Ogawa, Hiroyuki Toda

Research output: Contribution to journalConference articlepeer-review

110 Citations (Scopus)

Abstract

Tensile and plain fatigue properties of β type titanium alloy, Ti-29Nb-13Ta-4.6Zr, which underwent various thermo-mechanical treatments, were investigated in order to judge its potential for biomedical applications. Microstructures of Ti-29Nb-13Ta-4.6Zr (TNTZ) aged directly at 723 K for 259.2 ks after cold rolling and TNTZ aged at 723 K for 259.2 ks after solution treatment are composed of precipitated α phase in β phase. While, microstructures of TNTZ aged directly at 598 K and 673 K for 259.2 ks after cold rolling and aged at 598 K and 673 K for 259.2 ks after solution treatment are composed of precipitated ω phase, and precipitated α and ω phases in β phase, respectively. Tensile strength of aged TNTZ after solution treatment and aged TNTZ after cold rolling decreases with increasing aging temperature although the elongation shows the reverse trend. TNTZ composed of ω phase or ω and α phases in β phase shows the tensile strength of around 1000 MPa or more. Young's moduli of aged TNTZ after solution treatment and aged TNTZ after cold rolling decrease with increasing aging temperature. TNTZ conducted with solution treatment has the lowest Young's modulus of around 60 GPa. Fatigue strengths of aged TNTZ after solution treatment and aged TNTZ after cold rolling increase with increasing aging temperature. In particular, TNTZ aged directly at 723 K after cold rolling shows the greatest fatigue strength in both low cycle fatigue life and high cycle fatigue life regions, and the fatigue limit, which is around 770 MPa, is nearly equal to that of hot-rolled Ti-6Al-4V ELI conducted with aging, which is one of representative α + β type titanium alloys for biomedical applications.

Original languageEnglish
Pages (from-to)248-254
Number of pages7
JournalMaterials Science and Engineering C
Volume25
Issue number3
DOIs
Publication statusPublished - 2005 May 1
EventSelected Papers Presented at the Materials Science and Technology 2004 Meeting: Titanium for Biomedical, Dental, and Healthcare -
Duration: 2004 Sep 262004 Sep 29

Keywords

  • Microstructure
  • Tensile properties
  • Titanium-29mass%niobium-13mass%tantalum-4.6mass%zirconium
  • Young's modulus and plain fatigue properties

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments'. Together they form a unique fingerprint.

Cite this