Important Role of Endogenous Hydrogen Peroxide in Pacing-Induced Metabolic Coronary Vasodilation in Dogs In Vivo

Toyotaka Yada, Hiroaki Shimokawa, Osamu Hiramatsu, Yoshiro Shinozaki, Hidezo Mori, Masami Goto, Yasuo Ogasawara, Fumihiko Kajiya

Research output: Contribution to journalArticlepeer-review

49 Citations (Scopus)


Objectives: We examined whether endogenous hydrogen peroxide (H2O2) is involved in pacing-induced metabolic vasodilation in vivo. Background: We have previously demonstrated that endothelium-derived H2O2 is an endothelium-derived hyperpolarizing factor in canine coronary microcirculation in vivo. However, the role of endogenous H2O2 in metabolic coronary vasodilation in vivo remains to be examined. Methods: Canine subepicardial small coronary arteries (≥100 μm) and arterioles (<100 μm) were continuously observed by a microscope under cyclooxygenase blockade (ibuprofen, 12.5 mg/kg intravenous [IV]) (n = 60). Experiments were performed during paired right ventricular pacing under the following 7 conditions: control, nitric oxide (NO) synthase inhibitor (NG-monomethyl-L-arginine [L-NMMA], 2 μmol/min for 20 min intracoronary [IC]), catalase (a decomposer of H2O2, 40,000 U/kg IV and 240,000 U/kg/min for 10 min IC), 8-sulfophenyltheophylline (SPT) (an adenosine receptor blocker, 25 μg/kg/min for 5 min IC), L-NMMA+catalase, L-NMMA+tetraethylammonium (TEA) (KCa-channel blocker, 10 μg/kg/min for 10 min IC), and L-NMMA+catalase+8-SPT. Results: Cardiac tachypacing (60 to 120 beats/min) caused coronary vasodilation in both-sized arteries under control conditions in response to the increase in myocardial oxygen consumption. The metabolic coronary vasodilation was decreased after L-NMMA in subepicardial small arteries with an increased fluorescent H2O2 production compared with catalase group, whereas catalase decreased the vasodilation of arterioles with an increased fluorescent NO production compared with the L-NMMA group, and 8-SPT also decreased the vasodilation of arterioles. Furthermore, the metabolic coronary vasodilation was markedly attenuated after L-NMMA+catalase, L-NMMA+TEA, and L-NMMA+catalase+8-SPT in both-sized arteries. Conclusions: These results indicate that endogenous H2O2 plays an important role in pacing-induced metabolic coronary vasodilation in vivo.

Original languageEnglish
Pages (from-to)1272-1278
Number of pages7
JournalJournal of the American College of Cardiology
Issue number13
Publication statusPublished - 2007 Sep 25
Externally publishedYes

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Important Role of Endogenous Hydrogen Peroxide in Pacing-Induced Metabolic Coronary Vasodilation in Dogs In Vivo'. Together they form a unique fingerprint.

Cite this