Impact of low concentration hydrocarbons in natural gas on thermal partial oxidation in a micro-flow reactor for solid oxide fuel cell applications

Brent B. Skabelund, Hisashi Nakamura, Takuya Tezuka, Kaoru Maruta, Jeongmin Ahn, Ryan J. Milcarek

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

The increase in production and decrease in cost of natural gas have made it a viable alternative fuel to petroleum and coal power-based systems. The thermal partial oxidation of natural gas has been investigated previously, but few have investigated the effects of lower concentration hydrocarbons on reforming characteristics; especially at low temperatures (<1000 °C). This study investigates the microcombustion reforming of methane/air and natural gas/air utilizing heat recirculation to achieve high synthesis gas production. Maximum wall temperatures of 800–1000 °C at total flow rates of 10 and 50 mL min−1 are investigated. Equivalence ratios 1–5 are investigated with no soot formation present in the reactor at 800 °C and 900 °C. Natural gas is found to reform ⁓130% more than methane at 800 °C and 50 mL min−1 total flow rate due to low concentration hydrocarbons found in natural gas. A micro-tubular solid oxide fuel cell (mT-SOFC) is integrated into the natural gas/air microcombustion exhaust and characterized. The mT-SOFC operating in microcombustion exhaust achieves a high fuel utilization of 60% and 84% of the power density of a natural gas baseline. Three short-term tests are performed comparing the stability of natural gas and natural gas microcombustion in a mT-SOFC.

Original languageEnglish
Article number229007
JournalJournal of Power Sources
Volume477
DOIs
Publication statusPublished - 2020 Nov 30

Keywords

  • Flame-assisted fuel cell (FFC)
  • Hydrogen production
  • Micro flow reactor
  • Microcombustion
  • Partial oxidation
  • Solid oxide fuel cell (SOFC)

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Impact of low concentration hydrocarbons in natural gas on thermal partial oxidation in a micro-flow reactor for solid oxide fuel cell applications'. Together they form a unique fingerprint.

Cite this