Identification of the ferromagnetic hysteresis simulation parameters using classic non-destructive testing equipment

S. Zhang, B. Ducharne, S. Takeda, G. Sebald, T. Uchimoto

Research output: Contribution to journalArticlepeer-review

Abstract

Electromagnetic non-destructive controls are performed daily by steel manufacturers and steel user companies. Many methods exist, including Eddy Current Testing (ECT), Magnetic Particle Inspection (MPI), Magnetic Incremental Permeability (MIP), Magnetic Barkhausen noise (MBN) … In this domain, progresses are constant, however there are limitations and accurate simulation tools able to improve the methods efficiency are still expected. Most of steels are ferromagnetic and characterized by a strong nonlinear hysteretic magnetic behavior. A precise taken into account of hysteresis is mandatory in the development of useful simulation tools. The hysteresis standard of characterization imposes restrictive conditions (geometrical, electrical …) and most of Non-Destructive Testing (NDT) industrial end-users face difficulties to obtain these inevitable experimental results. In this manuscript, we describe an alternative method to adjust the hysteresis simulation parameters based on experimental results coming from classic NDT industrial equipment. The acquisition of a flat coil impedance in an ECT configuration and under the superimposition of a quasi-static magnetic excitation (MPI equipment) is performed to plot the tested specimen MIP signature. The Dodd & Deeds (D&D) analytical solution for an ECT flat coil is used to return the corresponding permeability. An optimization process based on a modified Jiles-Atherton (J-A) model is run to extract a suitable combination of hysteresis parameters. Finally, the good comparison with an experimental B(H) characterization is worth as a validation of the method.

Original languageEnglish
Article number167971
JournalJournal of Magnetism and Magnetic Materials
Volume531
DOIs
Publication statusPublished - 2021 Aug 1

Keywords

  • Dodd and Deeds model
  • Eddy current testing
  • Ferromagnetic hysteresis simulation
  • Jiles-Atherton model
  • Magnetic incremental permeability

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Identification of the ferromagnetic hysteresis simulation parameters using classic non-destructive testing equipment'. Together they form a unique fingerprint.

Cite this