TY - JOUR
T1 - Identification of Celastrol as a Novel Therapeutic Agent for Pulmonary Arterial Hypertension and Right Ventricular Failure Through Suppression of Bsg (Basigin)/CyPA (Cyclophilin A)
AU - Kurosawa, Ryo
AU - Satoh, Kimio
AU - Nakata, Takashi
AU - Shindo, Tomohiko
AU - Kikuchi, Nobuhiro
AU - Satoh, Taijyu
AU - Siddique, Mohammad A.H.
AU - Omura, Junichi
AU - Sunamura, Shinichiro
AU - Nogi, Masamichi
AU - Takeuchi, Yutaro
AU - Miyata, Satoshi
AU - Shimokawa, Hiroaki
N1 - Funding Information:
This work was supported in part by the grants-in-aid for Scientific Research (15H02535, 15H04816, and 15K15046), all of which are from the Ministry of Education, Culture, Sports, Science and Technology, Tokyo, Japan, the grants-in-aid for Scientific Research from the Ministry of Health, Labour, and Welfare, Tokyo, Japan (10102895), and the grants-in-aid for Scientific Research from the Japan Agency for Medical Research and Development, Tokyo, Japan (15ak0101035h0001, 16ek0109176h0001, 17ek0109227h0001).
Publisher Copyright:
© 2021 Lippincott Williams and Wilkins. All rights reserved.
PY - 2021/3/1
Y1 - 2021/3/1
N2 - Objective: Pulmonary arterial hypertension is characterized by abnormal proliferation of pulmonary artery smooth muscle cells and vascular remodeling, which leads to right ventricular (RV) failure. Bsg (Basigin) is a transmembrane glycoprotein that promotes myofibroblast differentiation, cell proliferation, and matrix metalloproteinase activation. CyPA (cyclophilin A) binds to its receptor Bsg and promotes pulmonary artery smooth muscle cell proliferation and inflammatory cell recruitment. We previously reported that Bsg promotes cardiac fibrosis and failure in the left ventricle in response to pressure-overload in mice. However, the roles of Bsg and CyPA in RV failure remain to be elucidated. Approach and Results: First, we found that protein levels of Bsg and CyPA were upregulated in the heart of hypoxia-induced pulmonary hypertension (PH) in mice and monocrotaline-induced PH in rats. Furthermore, cardiomyocyte-specific Bsg-overexpressing mice showed exacerbated RV hypertrophy, fibrosis, and dysfunction compared with their littermates under chronic hypoxia and pulmonary artery banding. Treatment with celastrol, which we identified as a suppressor of Bsg and CyPA by drug screening, decreased proliferation, reactive oxygen species, and inflammatory cytokines in pulmonary artery smooth muscle cells. Furthermore, celastrol treatment ameliorated RV systolic pressure, hypertrophy, fibrosis, and dysfunction in hypoxia-induced PH in mice and SU5416/hypoxia-induced PH in rats with reduced Bsg, CyPA, and inflammatory cytokines in the hearts and lungs. Conclusions: These results indicate that elevated Bsg in pressure-overloaded RV exacerbates RV dysfunction and that celastrol ameliorates RV dysfunction in PH model animals by suppressing Bsg and its ligand CyPA. Thus, celastrol can be a novel drug for PH and RV failure that targets Bsg and CyPA.
AB - Objective: Pulmonary arterial hypertension is characterized by abnormal proliferation of pulmonary artery smooth muscle cells and vascular remodeling, which leads to right ventricular (RV) failure. Bsg (Basigin) is a transmembrane glycoprotein that promotes myofibroblast differentiation, cell proliferation, and matrix metalloproteinase activation. CyPA (cyclophilin A) binds to its receptor Bsg and promotes pulmonary artery smooth muscle cell proliferation and inflammatory cell recruitment. We previously reported that Bsg promotes cardiac fibrosis and failure in the left ventricle in response to pressure-overload in mice. However, the roles of Bsg and CyPA in RV failure remain to be elucidated. Approach and Results: First, we found that protein levels of Bsg and CyPA were upregulated in the heart of hypoxia-induced pulmonary hypertension (PH) in mice and monocrotaline-induced PH in rats. Furthermore, cardiomyocyte-specific Bsg-overexpressing mice showed exacerbated RV hypertrophy, fibrosis, and dysfunction compared with their littermates under chronic hypoxia and pulmonary artery banding. Treatment with celastrol, which we identified as a suppressor of Bsg and CyPA by drug screening, decreased proliferation, reactive oxygen species, and inflammatory cytokines in pulmonary artery smooth muscle cells. Furthermore, celastrol treatment ameliorated RV systolic pressure, hypertrophy, fibrosis, and dysfunction in hypoxia-induced PH in mice and SU5416/hypoxia-induced PH in rats with reduced Bsg, CyPA, and inflammatory cytokines in the hearts and lungs. Conclusions: These results indicate that elevated Bsg in pressure-overloaded RV exacerbates RV dysfunction and that celastrol ameliorates RV dysfunction in PH model animals by suppressing Bsg and its ligand CyPA. Thus, celastrol can be a novel drug for PH and RV failure that targets Bsg and CyPA.
KW - basigin
KW - fibrosis
KW - heart failure
KW - hypertension, pulmonary
KW - inflammation
KW - mice
UR - http://www.scopus.com/inward/record.url?scp=85100550340&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100550340&partnerID=8YFLogxK
U2 - 10.1161/ATVBAHA.120.315731
DO - 10.1161/ATVBAHA.120.315731
M3 - Article
C2 - 33472404
AN - SCOPUS:85100550340
SN - 1079-5642
VL - 41
SP - 1205
EP - 1217
JO - Arteriosclerosis, Thrombosis, and Vascular Biology
JF - Arteriosclerosis, Thrombosis, and Vascular Biology
IS - 3
ER -