Hydroxyl radicals generated by hydrogen peroxide photolysis recondition biofilm-contaminated titanium surfaces for subsequent osteoblastic cell proliferation

Keisuke Nakamura, Midori Shirato, Taichi Tenkumo, Taro Kanno, Anna Westerlund, Ulf Örtengren, Keiichi Sasaki, Yoshimi Niwano

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Titanium dental implants have been successfully used for decades; however, some implants are affected by peri-implantitis due to bacterial infection, resulting in loss of supporting bone. This study aimed to evaluate the effect of an antimicrobial chemotherapy employing H 2 O 2 photolysis—developed to treat peri-implantitis—on biofilm-contaminated titanium surfaces in association with osteoblastic cell proliferation on the treated surface. Titanium discs were sandblasted and acid-etched, followed by contamination with a three-species biofilm composed of Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus mitis. This biofilm model was used as a simplified model of clinical peri-implantitis biofilm. The discs were subjected to ultrasound scaling, followed by H 2 O 2 photolysis, wherein 365-nm LED irradiation of the disc immersed in 3% H 2 O 2 was performed for 5 min. We analysed proliferation of mouse osteoblastic cells (MC3T3-E1) cultured on the treated discs. Compared with intact discs, biofilm contamination lowered cell proliferation on the specimen surface, whereas H 2 O 2 photolysis recovered cell proliferation. Thus, H 2 O 2 photolysis can recover the degraded biocompatibility of biofilm-contaminated titanium surfaces and can potentially be utilised for peri-implantitis treatment. However, to verify the findings of this study in relation to clinical settings, assessment using a more clinically relevant multi-species biofilm model is necessary.

Original languageEnglish
Article number4688
JournalScientific reports
Volume9
Issue number1
DOIs
Publication statusPublished - 2019 Dec 1

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Hydroxyl radicals generated by hydrogen peroxide photolysis recondition biofilm-contaminated titanium surfaces for subsequent osteoblastic cell proliferation'. Together they form a unique fingerprint.

Cite this