Hydroponic approach to assess rhizodegradation by sudangrass (Sorghum x drummondii) reveals pH- and plant age-dependent variability in bacterial degradation of polycyclic aromatic hydrocarbons (PAHs)

John Jewish A. Dominguez, Chihiro Inoue, Mei Fang Chien

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Rhizodegradation of polycyclic aromatic hydrocarbons (PAHs) is a product of complex interactions between plant and bacteria. In this study, hydroponic culture of sudangrass was established in order to investigate the effects of the plant on PAHs degradation and vice versa through changes in rhizosphere bacterial community. Results showed a plant-induced variability in PAHs degradation dependent on a characteristic shift in bacterial community, with pH and plant age as driving factors. Moreover, bacterial communities with high diversity seemed to abate the phytotoxic effects of PAHs degradation as observed in the plant's gross health. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and next-generation sequencing revealed that regardless of plant age and culture conditions, the increase or decrease of Sphingobium sp. could dictate the PAHs degradation potential of the bacterial consortium. Overall, this study utilized hydroponic culture of sudangrass to show that plant even of same species can suppress, support, or enhance PAHs degradation of bacteria depending on specific factors.

Original languageEnglish
Article number121695
JournalJournal of Hazardous Materials
Volume387
DOIs
Publication statusPublished - 2020 Apr 5

Keywords

  • Hydroponic culture
  • Plant-bacteria interactions
  • Polycyclic aromatic hydrocarbons
  • Rhizodegradation
  • Sudangrass

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Hydroponic approach to assess rhizodegradation by sudangrass (Sorghum x drummondii) reveals pH- and plant age-dependent variability in bacterial degradation of polycyclic aromatic hydrocarbons (PAHs)'. Together they form a unique fingerprint.

Cite this