Abstract
We study the spin state of the πradical assemblies, which are created through converting nonmagnetic terbium (2,3,7,8,12,13,17,18-octaethylporphyrinate) (2,3,7,8,12,13,17,18-octaethylporphyrindiate) (Tb(Hoep)(oep)) selectively either into [Tb(oep)2] or deethyl-[Tb(oep)2] radical molecule by removing the H atom and further ethyl group, with the injection of tunneling electrons using a scanning tunneling microscope. The Kondo resonance, formed by screening the radical spin by the conduction electron, shows the dip and peak shapes for [Tb(oep)2] or deethyl-[Tb(oep)2], respectively, due to the difference in the coupling between the two oep ligands. When these two types of molecules are created next to each other, the Kondo resonance appears as a mixture of the peak and dip at the interface of the two. This is interpreted as the result of the hybridization of the two different πradical orbitals, suggesting a possible control of the Kondo state by designing the molecular orbitals.
Original language | English |
---|---|
Pages (from-to) | 12024-12029 |
Number of pages | 6 |
Journal | Journal of Physical Chemistry C |
Volume | 124 |
Issue number | 22 |
DOIs | |
Publication status | Published - 2020 Jun 4 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films