Human interface and transmit frequency control for the through-air acoustic real-time high resolution vision substitute system

Hirofumi Taki, Toru Sato

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Existing vision substitute systems are not useful as navigation system due to the limitation of spatial and time resolution. In this study we propose a transmit control method free from range aliasing for a high resolution acoustic vision substitute systems, which we previously proposed. We also examine a human-machine information transfer method with a vibrotactile stimulator array consisting of 13 × 21 elements. It presents the target area of 30 degree × 60 degree by the sampling interval of 1 degree at the center. The system presents range, direction, and surface topography of targets to the subject.

Original languageEnglish
Title of host publicationProceedings of the 2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2555-2558
Number of pages4
ISBN (Print)0780387406, 9780780387409
DOIs
Publication statusPublished - 2005 Jan 1
Event2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005 - Shanghai, China
Duration: 2005 Sep 12005 Sep 4

Publication series

NameAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
Volume7 VOLS
ISSN (Print)0589-1019

Other

Other2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005
CountryChina
CityShanghai
Period05/9/105/9/4

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Human interface and transmit frequency control for the through-air acoustic real-time high resolution vision substitute system'. Together they form a unique fingerprint.

Cite this