Human CoG estimation for assistive robots using a small number of sensors

Mizuki Takeda, Yasuhisa Hirata, Kazuhiro Kosuge, Takahiro Katayama, Yasuhide Mizuta, Atsushi Koujina

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

Various assistive machines have been developed to prevent falling accidents of the elderly. In order to achieve advanced support using robot technology, it is important to acquire data or real-time state estimation of user's various motions. However, a lot of expensive and sophisticated sensors utilized to estimate user's state accurately are difficult to use in general households or institutions. In this article, we propose a method to estimate the user's state utilizing a few inexpensive and simple sensors. We focused on CoG (Center of Gravity) to estimate user's state, but when utilizing less sensors than required to calculate the human link model parameters, the position of CoG is underspecified. Then we considered the range of value of unknown parameters to calculate candidates of CoG. The range of CoG candidates can become narrow enough to estimate human state in real-time by properly selecting and placing the sensors. Therefore, the evaluation of CoG candidates allows us to determine where and which sensors to set when designing assistive robots. We firstly selected some sensors which can be generally found on assistive machines, and we created sets of measurements using the number of unknown parameters. From the result of the experiment using a motion capture system, we confirmed that the range of the candidates was considerably narrow when using some of the created measurement sets. We validated the proposed method to estimate user's CoG candidates by actually placing the sensors according to the designed measurement sets and confirmed that the CoG candidates corresponded to those obtained using the motion capture system.

Original languageEnglish
Title of host publicationICRA 2017 - IEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6052-6057
Number of pages6
ISBN (Electronic)9781509046331
DOIs
Publication statusPublished - 2017 Jul 21
Event2017 IEEE International Conference on Robotics and Automation, ICRA 2017 - Singapore, Singapore
Duration: 2017 May 292017 Jun 3

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2017 IEEE International Conference on Robotics and Automation, ICRA 2017
CountrySingapore
CitySingapore
Period17/5/2917/6/3

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Human CoG estimation for assistive robots using a small number of sensors'. Together they form a unique fingerprint.

  • Cite this

    Takeda, M., Hirata, Y., Kosuge, K., Katayama, T., Mizuta, Y., & Koujina, A. (2017). Human CoG estimation for assistive robots using a small number of sensors. In ICRA 2017 - IEEE International Conference on Robotics and Automation (pp. 6052-6057). [7989717] (Proceedings - IEEE International Conference on Robotics and Automation). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICRA.2017.7989717