Homodimerization of nemo-like kinase is essential for activation and nuclear localization

Shizuka Ishitani, Kenji Inaba, Kunihiro Matsumoto, Tohru Ishitani

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Nemo-like kinase (NLK) is an evolutionarily conserved protein kinase that phosphorylates several transcription factors. However, the molecular mechanisms that regulate NLK activity have been poorly understood. Here we show that homodimerization of NLK is required for its activation and nuclear localization. Biochemical analysis revealed that NLK is activated through intermolecular autophosphorylation of NLK dimers at Thr-286. Mutation of NLK at Cys-425, which corresponds to the defect in the Caenorhabditis elegans NLK homologue lit-1 , prevented NLK dimerization, rendering NLK defective in both nuclear localization and kinase activity. By contrast, the external addition of nerve growth factor, which has been previously identified as an NLK activator, induced dimerization and Thr-286 autophosphorylation of endogenous NLK proteins. In addition, both dimerization and Thr-286 phosphorylation of NLK were found to be essential for induction of neurite-like cellular processes by NLK. The present findings suggest that dimerization is an initial key event required for the functional activation of NLK.

Original languageEnglish
Pages (from-to)266-277
Number of pages12
JournalMolecular biology of the cell
Volume22
Issue number2
DOIs
Publication statusPublished - 2011 Jan 15
Externally publishedYes

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Homodimerization of nemo-like kinase is essential for activation and nuclear localization'. Together they form a unique fingerprint.

  • Cite this