Highly-sensitive graphene nano-ribbon-base strain sensor

Shinichirou Sasaki, Yang Meng, Ken Suzuki, Hideo Miura

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Citations (Scopus)

Abstract

Large-area and high-quality monolayer graphene was synthesized in order to fabricate a graphene-base highly sensitive strain sensor. A rapid LPCVD (Low Pressure Chemical vaper deposition) synthesis process of monolayer graphene was developed by using acetylene as a resource gas. To synthesize high-quality single-crystal graphene, the surface of copper substrate was strongly orientated to (111) crystallographic plane. By optimizing the concentration of acetylene gas by diluting hydrogen, the high quality of monolayer single-crystalline graphene film was successfully grown on the copper substrate. A strain sensor was fabricated using the graphene-coated Cu foils by applying the MEMS process and reactive ion etching (RIE). Then, the sensor was transferred onto a polydimethysiloxane (PDMS) substrate. Tree-dimensional bending test was performed to investigate the piezoresistive property of the patterned graphene nano-ribbon. It was confirmed that the highly sensitive strain sensor was obtained when the width of the nanoribbon was thinner than 70 nm.

Original languageEnglish
Title of host publicationMicro- and Nano-Systems Engineering and Packaging
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791850640
DOIs
Publication statusPublished - 2016 Jan 1
EventASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016 - Phoenix, United States
Duration: 2016 Nov 112016 Nov 17

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume10

Other

OtherASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016
Country/TerritoryUnited States
CityPhoenix
Period16/11/1116/11/17

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Highly-sensitive graphene nano-ribbon-base strain sensor'. Together they form a unique fingerprint.

Cite this