Highly sensitive 2D strain sensor using carbon nanotube

Hiroshi Kawakami, Masato Ohnishi, Ken Suzuki, Hideo Miura

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

A new highly sensitive strain measurement method has been developed by applying the strain-induced change of the electronic conductivity of CNTs. It is reported that most multiwalled carbon nanotubes (MWCNTs) show metallic conductivity and they are rather cheap comparing with singlewalled carbon nanotubes (SWCNTs). However, it was found that the electric conductivity of MWCNTs changes drastically under uniaxial strain because of the drastic change of their band gap. Therefore, the authors have developed a highly sensitive strain sensor which can detect the local strain distribution by using MWCNTs. In order to design a new sensor using MWCNT, it is very important to control the shape of the MWCNTs under strain. Thus, a method for controlling the shape of the MWCNTs was developed by applying a chemical vapor deposition (CVD) technique. It was found that the shape of the grown MWCNT could be controlled by changing the average thickness of the catalyst and the deposition temperature of the MWCNT. The electrical resistance of the grown MWCNT changed almost linearly with the applied strain, and the maximum strain sensitivity obtained under the application of uniaxial strain was about 10%/1000-μ strain (gauge factor: 100). A two-dimensional strain sensor, which consists of area-arrayed fine bundles of MWCNTs, has been developed by applying MEMS technology. Under the application of compressive strain, the electric resistance was confirmed to increase almost linearly with the applied strain.

Original languageEnglish
Title of host publicationASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2013
DOIs
Publication statusPublished - 2013 Dec 1
EventASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2013 - Burlingame, CA, United States
Duration: 2013 Jul 162013 Jul 18

Publication series

NameASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2013
Volume1

Other

OtherASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2013
Country/TerritoryUnited States
CityBurlingame, CA
Period13/7/1613/7/18

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Computer Networks and Communications
  • Computer Science Applications
  • Hardware and Architecture
  • Information Systems
  • Electronic, Optical and Magnetic Materials

Fingerprint

Dive into the research topics of 'Highly sensitive 2D strain sensor using carbon nanotube'. Together they form a unique fingerprint.

Cite this