High-resolution mantle tomography of China and surrounding regions

Jinli Huang, Dapeng Zhao

Research output: Contribution to journalArticlepeer-review

826 Citations (Scopus)

Abstract

A high-resolution P wave tomographic model of the crust and mantle down to 1100 km depth under China and surrounding regions is determined by using about one million arrival times of P, pP, PP, and PcP waves from 19,361 earthquakes recorded by 1012 seismic stations. The subducting Pacific slab is imaged clearly as a high-velocity zone from the oceanic trenches down to about 600 kin depth, and intermediate-depth and deep earthquakes are located within the slab. The Pacific slab becomes stagnant in the mantle transition zone under east China. The western edge of the stagnant slab is roughly coincident with a surface topographic boundary in east China. The active Changbai and Wudalianchi intraplate volcanoes in northeast China are underlain by significant slow anomalies in the upper mantle, above the stagnant Pacific slab. These results suggest that the active intraplate volcanoes in NE China are not hot spots but a kind of back-arc volcano associated with the deep subduction of the Pacific slab and its stagnancy in the transition zone. Under the Mariana arc, however, the Pacific slab penetrates directly down to the lower mantle. The active Tengchong volcano in southwest China is related to the eastward subduction of the Burma microplate. The subducting Indian and Philippine Sea plates are also imaged clearly. The Indian plate has subducted down to 200-300 km depth under the Tibetan Plateau with a horizontal moving distance of about 500 kin. High-velocity anomalies are revealed in the upper mantle under the Tarim basin, Ordos, and Sichuan basin, which are three stable blocks in China.

Original languageEnglish
Article numberB09305
JournalJournal of Geophysical Research: Solid Earth
Volume111
Issue number9
DOIs
Publication statusPublished - 2006 Sep 4
Externally publishedYes

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'High-resolution mantle tomography of China and surrounding regions'. Together they form a unique fingerprint.

Cite this