Abstract
Hemoglobin (Hb) released from extravasated erythrocytes is implicated in brain edema after intracerebral hemorrhage (ICH). Hemoglobin is a major component of blood and a potent mediator of oxidative stress after ICH. Oxidative stress and matrix metalloproteinases (MMPs) are associated with blood-brain barrier (BBB) dysfunction. This study was designed to elucidate whether Hb-induced oxidative stress contributes to MMP-9 activation and BBB dysfunction in vivo. An intracerebral injection of Hb into rat striata induced increased hydroethidine (HEt) signals in parallel with MMP-9 levels. In situ gelatinolytic activity colocalized with oxidized HEt signals in vessel walls, accompanied by immunoglobulin G leakage and a decrease in immunoactivity of endothelial barrier antigen, a marker of endothelial integrity. Administration of a nonselective MMP inhibitor prevented MMP-9 levels and albumin leakage in injured striata. Moreover, reduction in oxidative stress by copper/zinc- superoxide dismutase (SOD1) overexpression reduced oxidative stress, MMP-9 levels, albumin leakage, and subsequent apoptosis compared with wild-type littermates. We speculate that Hb-induced oxidative stress may contribute to early BBB dysfunction and subsequent apoptosis, partly through MMP activation, and that SOD1 overexpression may reduce Hb-induced oxidative stress, BBB dysfunction, and apoptotic cell death.
Original language | English |
---|---|
Pages (from-to) | 1939-1950 |
Number of pages | 12 |
Journal | Journal of Cerebral Blood Flow and Metabolism |
Volume | 30 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2010 Dec |
Externally published | Yes |
Keywords
- blood-brain barrier
- copper/zinc-superoxide dismutase
- hemoglobin
- matrix metalloproteinases
- oxidative stress
ASJC Scopus subject areas
- Neurology
- Clinical Neurology
- Cardiology and Cardiovascular Medicine