Heavy-fermion superconductivity and Fermi-surface properties under pressure

Yoshichika Onuki, Rikio Settai, Yasunao Miura, Hiroki Tsutsumi, Fuminori Honda, Hisatomo Harima

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We present an overview of the Fermi-surface properties for antiferromagnets CeRh2Si2, CeIn3, CeRhIn5, and CeIrSi3, which were clarified from the de Haas-van Alphen (dHvA) experiments under strong magnetic fields up to 170kOe and high pressures up to 3GPa. A drastic change of the 4f-electronic state from a 4f-localized Fermi surface to a 4f-itinerant Fermi surface occurs in CeRh2Si2, CeIn3, and CeRhIn5 when the pressure P crosses a critical pressure Pc or Pc*. Here, the Néel temperature TN disappears and the superconducting state appears at around Pc or Pc*. A critical pressure Pc* in CeRhIn5 is the pressure when TN is extrapolated to zero in the temperature vs. pressure phase diagram, and/or the antiferromagnetic state disappears completely even in magnetic fields. This is because the antiferromagnetic state is stable against magnetic fields, or in other words, the antiferromagnetic state recovers in magnetic fields. CeIrSi3 without inversion symmetry in the tetragonal structure is also similar to CeRhIn5 in the superconducting and Fermi-surface properties. It is characteristic that a huge upper critical field at zero temperature in superconductivity Hc2(0)≃ 450kOe is realized for H||[001] in CeIrSi3 with the superconducting transition temperature Tsc=1.6K.

Original languageEnglish
Pages (from-to)583-588
Number of pages6
JournalPhysica Status Solidi (B) Basic Research
Volume250
Issue number3
DOIs
Publication statusPublished - 2013 Mar

Keywords

  • De Haas-van Alphen effect
  • Fermi surface
  • Heavy-fermion superconductivity

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Heavy-fermion superconductivity and Fermi-surface properties under pressure'. Together they form a unique fingerprint.

  • Cite this